首页 >> 学科在线 >>数学学科 >> 直线与圆方程知识点总结
详细内容

直线与圆方程知识点总结

              直线和圆的方程

考试内容:
数学探索©版权所有www.delve.cn直线的倾斜角和斜率,直线方程的点斜式和两点式.直线方程的一般式.
数学探索©版权所有www.delve.cn两条直线平行与垂直的条件.两条直线的交角.点到直线的距离.
数学探索©版权所有www.delve.cn用二元一次不等式表示平面区域.简单的线性规划问题.
数学探索©版权所有www.delve.cn曲线与方程的概念.由已知条件列出曲线方程.
数学探索©版权所有www.delve.cn圆的标准方程和一般方程.圆的参数方程.
数学探索©版权所有www.delve.cn考试要求:
数学探索©版权所有www.delve.cn1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
数学探索©版权所有www.delve.cn2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式能够根据直线的方程判断两条直线的位置关系.
数学探索©版权所有www.delve.cn3)了解二元一次不等式表示平面区域.
数学探索©版权所有www.delve.cn4)了解线性规划的意义,并会简单的应用.
数学探索©版权所有www.delve.cn5)了解解析几何的基本思想,了解坐标法.
数学探索©版权所有www.delve.cn6)掌握圆的标准方程和一般方程,了解参数方程的概念。理解圆的参数方程.

§07. 直线和圆的方程  知识要点

一、直线方程.

1. 直线的倾斜角:一条直线向上的方向与轴正方向所成的最小正角叫做这条直线的倾斜角,其中直线与轴平行或重合时,其倾斜角为0,故直线倾斜角的范围是.

注:时,直线垂直于轴,它的斜率不存在.

每一条直线都存在惟一的倾斜角,除与轴垂直的直线不存在斜率外,其余每一条直线都有惟一的斜率,并且当直线的斜率一定时,其倾斜角也对应确定.

2. 直线方程的几种形式:点斜式、截距式、两点式、斜切式.

特别地,当直线经过两点,即直线在轴,轴上的截距分别为时,直线方程是:.

注:若是一直线的方程,则这条直线的方程是,但若则不是这条线.

附:直线系:对于直线的斜截式方程,当均为确定的数值时,它表示一条确定的直线,如果变化时,对应的直线也会变化.①为定植,变化时,它们表示过定点(0)的直线束.②为定值,变化时,它们表示一组平行直线.

3. 两条直线平行:

两条直线平行的条件是:是两条不重合的直线. ②在的斜率都存在的前提下得到的. 因此,应特别注意,抽掉或忽视其中任一个前提都会导致结论的错误.

一般的结论是:对于两条直线,它们在轴上的纵截距是,则,且的斜率均不存在,即是平行的必要不充分条件,且

推论:如果两条直线的倾斜角为.                    

两条直线垂直:

两条直线垂直的条件:设两条直线的斜率分别为,则有这里的前提是的斜率都存在. ,且的斜率不存在或,且的斜率不存在. (即是垂直的充要条件)

4. 直线的交角:

直线的角(方向角);直线的角,是指直线绕交点依逆时针方向旋转到与重合时所转动的角,它的范围是,当.

两条相交直线的夹角:两条相交直线的夹角,是指由相交所成的四个角中最小的正角,又称为所成的角,它的取值范围是,则有.

5. 过两直线的交点的直线系方程为参数,不包括在内)

6. 点到直线的距离

点到直线的距离公式:设点,直线的距离为,则有.

注:

1. 两点P1(x1,y1)P2(x2,y2)的距离公式:.

特例:点P(x,y)到原点O的距离:

2.  定比分点坐标分式。若点P(x,y)分有向线段,其中P1(x1,y1),P2(x2,y2).则  

特例,中点坐标公式;重要结论,三角形重心坐标公式。

3. 直线的倾斜角(0°≤180°)、斜率:

4. 过两点.

(即直线和x轴垂直)时,直线的倾斜角,没有斜率

 

两条平行线间的距离公式:设两条平行直线,它们之间的距离为,则有.

注;直线系方程

1. 与直线:Ax+By+C= 0平行的直线系方程是:Ax+By+m=0.( mR, Cm).

2. 与直线:Ax+By+C= 0垂直的直线系方程是:Bx-Ay+m=0.( mR)

3. 过定点(x1,y1)的直线系方程是:   A(x-x1)+B(y-y1)=0  (A,B不全为0)

4. 过直线l1l2交点的直线系方程:(A1x+B1y+C1+λ( A2x+B2y+C2=0 (λR   注:该直线系不含l2.

 

7. 关于点对称和关于某直线对称:

关于点对称的两条直线一定是平行直线,且这个点到两直线的距离相等.

关于某直线对称的两条直线性质:若两条直线平行,则对称直线也平行,且两直线到对称直线距离相等.

若两条直线不平行,则对称直线必过两条直线的交点,且对称直线为两直线夹角的角平分线.

点关于某一条直线对称,用中点表示两对称点,则中点在对称直线上(方程),过两对称点的直线方程与对称直线方程垂直(方程①②可解得所求对称点.

注:曲线、直线关于一直线()对称的解法:yxxy. 例:曲线f(x ,y)=0关于直线y=x2对称曲线方程是f(y+2 ,x 2)=0.

曲线C: f(x ,y)=0关于点(a ,b)的对称曲线方程是f(a  x, 2b  y)=0.

二、圆的方程.

1. 曲线与方程:在直角坐标系中,如果某曲线上的 与一个二元方程的实数建立了如下关系:

曲线上的点的坐标都是这个方程的解.

以这个方程的解为坐标的点都是曲线上的点.

那么这个方程叫做曲线方程;这条曲线叫做方程的曲线(图形).

曲线和方程的关系,实质上是曲线上任一点其坐标与方程的一种关系,曲线上任一点是方程的解;反过来,满足方程的解所对应的点是曲线上的点.

注:如果曲线C的方程是f(x ,y)=0,那么点P0(x0 ,y)线C上的充要条件是f(x0 ,y0)=0

2. 圆的标准方程:以点为圆心,为半径的圆的标准方程是.

特例:圆心在坐标原点,半径为的圆的方程是.

注:特殊圆的方程:轴相切的圆方程   

轴相切的圆方程          

轴都相切的圆方程      

3. 圆的一般方程: .

时,方程表示一个圆,其中圆心,半径.

时,方程表示一个点.

时,方程无图形(称虚圆).

注:圆的参数方程:为参数).

方程表示圆的充要条件是:.

圆的直径或方程:已知(用向量可征).

4. 点和圆的位置关系:给定点及圆.

在圆

在圆

在圆

5. 直线和圆的位置关系:

  设圆    直线

  圆心到直线的距离.

时,相切;

附:若两圆相切,则相减为公切线方程.

时,相交;

公共弦方程:设

 

有两个交点,则其公共弦方程为.

时,相离. 

附:若两圆相离,则相减为圆心的连线的中与线方程.

  由代数特征判断:方程组用代入法,得关于(或)的一元二次方程,其判别式为,则:

相切;

相交;

相离.

注:若两圆为同心圆则相减,不表示直线.

6. 圆的切线方程:圆的斜率为的切线方程是过圆

上一点的切线方程为:.

一般方程若点(x0 ,y0)在圆上,则(x – a)(x0 – a)+(y – b)(y0 – b)=R2. 特别地,过圆上一点的切线方程为.

若点(x0 ,y0)不在圆上,圆心为(a,b)联立求出切线方程.

7. 求切点弦方程:方法是构造图,则切点弦方程即转化为公共弦方程. 如图:ABCD四类共圆. 已知的方程 又以ABCD为圆为方程为 

所以BC的方程即①②相切即为所求.